Prague, Czech Republic

Physics of Condensed Matter and Materials

Master's
Language: EnglishStudies in English
Subject area: physical science, environment
Years of study: 2
University website: www.cuni.cz
Matter
In the classical physics observed in everyday life, matter is any substance that has mass and takes up space by having volume. All everyday objects that we can touch are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, "matter" generally includes atoms and anything made up of these, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or sound. Matter exists in various states (also known as phases). These include classical everyday phases such as solid, liquid, and gas - for example water exists as ice, liquid water, and gaseous steam - but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.
Physics
Physics (from Ancient Greek: φυσική (ἐπιστήμη), translit. physikḗ (epistḗmē), lit. 'knowledge of nature', from φύσις phýsis "nature") is the natural science that studies matter and its motion and behavior through space and time and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.
Matter
Natural science served as - if we overlook the hasty identification of mind and matter which had its origin in natural science - as a shining and fruitful example to psychology.
Hermann Ebbinghaus, Psychology: An elementary textbook (1908)
Physics
As soon as we venture on the paths of the physicist, we learn to weigh and measure, to deal with time and space and mass and their related concepts, and to find more and more our knowledge expressed and our needs satisfied through the concept of number, as in the dreams of Plato and Pythagoras.
D'Arcy Wentworth Thompson, On Growth and Form (1917)
Matter
Of course, we must avoid postulating a new element for each new phenomenon. But an equally serious mistake is to admit into the theory only those elements which can now be observed. For the purpose of a theory is not only to correlate the results of observations that we already know how to make, but also to suggest the need for new kinds of observations and to predict their results. In fact, the better a theory is able to suggest the need for new kinds of observations and to predict their results correctly, the more confidence we have that this theory is likely to be good representation of the actual properties of matter and not simply an empirical system especially chosen in such a way as to correlate a group of already known facts.
David Bohm, "A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden' Variables," (January 15 1952). Physical Review 35 (2): 189.
Privacy Policy