Saint Petersburg, Russia

Master's

Language: Russian

Subject area: mathematics and statistics

Kind of studies: full-time studies

University website: www.ifmo.ru

Applied mathematics is the application of mathematical methods by different fields such as science, engineering, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models. In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics where abstract concepts are studied for their own sake. The activity of applied mathematics is thus intimately connected with research in pure mathematics.

A computer is a device that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks.

Computer science is the study of the theory, experimentation, and engineering that form the basis for the design and use of computers. It is the scientific and practical approach to computation and its applications and the systematic study of the feasibility, structure, expression, and mechanization of the methodical procedures (or algorithms) that underlie the acquisition, representation, processing, storage, communication of, and access to, information. An alternate, more succinct definition of computer science is the study of automating algorithmic processes that scale. A computer scientist specializes in the theory of computation and the design of computational systems. See glossary of computer science.

Mathematics (from Greek μάθημα máthēma, "knowledge, study, learning") is the study of such topics as quantity, structure, space, and change. It has no generally accepted definition.

Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.

Computer scientists have so far worked on developing powerful programming languages that make it possible to solve the technical problems of computation. Little effort has gone toward devising the languages of interaction.

Donald Norman, The Design of Everyday Things (1988), Ch. 6

The final truth about a phenomenon resides in the mathematical description of it; so long as there is no imperfection in this, our knowledge of the phenomenon is complete. We go beyond the mathematical formula at our own risk; we may find a model or a picture which helps us understand it, but we have no right to expect this, and our failure to find such a model or picture need not indicate that either our reasoning or our knowledge is at fault. The making of models or pictures to explain mathematical formulas and the phenomena they describe is not a step towards, but a step away from reality; it is like making a graven image of a spirit.

Sir James Jeans, The Mysterious Universe (1930)

Those (natural) laws cannot be circumvented by any amount of piety or cleverness, but they can be understood. Uncovering them should be the highest goal of a civilized society. Not, as we have seen, because scientists have any claim to greater intellect or virtue, but because the scientific method transcends the flaws of individual scientists. Science is the only way we have of separating the truth from ideology, or fraud, or mere foolishness.

Robert L. Park, Voodoo Science (2000), p. 211